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Abstract

Structure from Motion (SfM) has been a cornerstone of

computer vision for decades, aiming to reconstruct 3D

scene structure and camera parameters from 2D images.

Traditionally, this problem is broken into several subprob-

lems—image matching, triangulation, and global optimiza-

tion—typically relying on 2D keypoints and reprojection

error. Recently, 3D reconstruction models like DUSt3R

have proven highly effective for a variety of 3D vision

tasks. These models, based on feed-forward neural net-

works, regress dense 3D pointmaps from pairs of images

in a shared coordinate system. In this work, we integrate

modern 3D reconstruction priors into the incremental SfM

pipeline. We propose a novel optimization method that

aligns 3D pointmaps with scene structure and incorporates

them as additional constraints in the optimization process.

This allows us to enhance global optimization by combining

both 2D keypoints and 3D pointmaps, resulting in improved

robustness. We evaluate our approach on indoor scenes and

demonstrate that it outperforms the baseline pipeline that

relies solely on 2D constraints from reprojection error.

1. Introduction

Reconstructing the 3D geometry from a set of images is a

long-standing and fundamental problem in the computer vi-

sion community. The problem is usually solved using Struc-

ture from Motion (SfM), and can enable solutions for her-

itage preservation, robotics, augmented and virtual reality,

and many other areas.

Traditional incremental SfM pipelines rely on detecting

and matching local features [17] between images, estimat-

ing camera parameters, triangulating 3D points [12], and

refining reconstruction through global optimization - most

notably, optimizing for a reprojection error using Bundle

Adjustment (BA) [27]. While effective, these pipelines are

heavily handcrafted, often suffering from cumulative errors

across stages and exhibiting sensitivity to challenging con-

ditions such as low-texture regions or high outlier rates.

Recently, there has been a growing shift toward replac-

Figure 1. Left: Input images. Top Right: Partial reconstruction

with aligned 3D pointmaps (gray) and their corresponding con-

straints (orange). Bottom Right: Final scene structure of our re-

construction.

ing traditional SfM components with deep learning-based

alternatives. Early approaches focused on enhancing indi-

vidual stages of the pipeline, such as feature detection [6],

description [4], and image matching [20, 24]. Over time,

researchers have progressively substituted more of the tra-

ditional pipeline, leading to end-to-end deep SfM meth-

ods [23, 28, 29]. As a final step, 3D foundation models go

directly from images to dense scene structure using a large

transformer trained on millions of images and correspond-

ing 3D reconstructions. The seminal work in this field is

DUSt3R [30], which regresses dense scene structure from

image pairs in a common coordinate system. Through a

global optimization in 3D space, they can be adapted to es-

timate camera poses. While promising, they entirely neglect

the rich body of research in SfM and particularly the accu-

racy of keypoint-based methods. Instead of treating these

networks as a final result, we instead view them as data-

driven reconstruction prior and combine them with a tra-

ditional SfM pipeline relying on keypoint matches. This

new perspective allows us to add 3D constraints into the



traditional SfM pipeline, which has so far been dominated

solely by 2D constraints based on the reprojection error of

detected keypoints.

Our focus lies on the global optimization stage, which

is traditionally dominated by BA - an approach that mini-

mizes reprojection error to jointly refine camera parameters

and 3D structure. Although effective, BA is susceptible to

outliers and ambiguities, especially under challenging con-

ditions such as low triangulation angles.

To address these limitations, we augment the BA process

with additional constraints based on pairwise pointmaps

predicted by 3D reconstruction priors, such as DUSt3R

[30]. These learned priors provide complementary 3D cues

that can be aligned with the estimated scene structure, intro-

ducing additional geometric structure into the optimization.

By incorporating them directly into the global optimization,

our method effectively combines 2D and 3D constraints to

refine our scene structure.

We show that leveraging these 3D constraints improves

performance on sparse-view indoor scene reconstruction

compared to a baseline method using BA.

In summary, our contributions are:

• We present a hybrid SfM framework that integrates

learned 3D reconstruction priors into the traditional

SfM pipeline, improving reconstruction quality.

• We introduce a novel global optimization strategy that

augments the traditional minimization of 2D reprojec-

tion error with an additional optimization in 3D space,

by minimizing the distance between the scene struc-

ture and the points estimated by our reconstruction

prior.

• We validate our approach through extensive experi-

ments on indoor scenes, demonstrating improved re-

sults in camera pose estimation.

2. Related Work

2.1. Traditional SfM

The traditional SfM pipeline begins with a set of unordered

images. Keypoints are detected, descriptors are extracted,

and matches are established across image pairs [4, 17, 20].

These two-view correspondences are geometrically verified

by epipolar geometry, and feature tracks are formed by

merging matching keypoints across images. There are two

main paradigms in SfM: incremental [21] and global [19].

Both rely on the same feature matching process but differ in

how they estimate camera parameters and 3D scene points.

In incremental SfM, reconstruction starts from an image

pair with a strong baseline to ensure robust initialization.

Frames overlapping with the scene structure are registered

using Perspective-n-Point [9]. Newly visible scene struc-

ture is triangulated [12] and followed by a global optimiza-

tion to refine both cameras and scene structure, tradition-

ally via Bundle Adjustment [27]. Robust estimators such as

RANSAC [8] are used throughout the pipeline to mitigate

outliers. Outliers are further filtered based on triangulation

angles or reprojection error. This process is repeated until

the reconstruction is completed or no more frames can be

registered.

Global SfM [19], in contrast, estimates all camera poses

simultaneously - typically via rotation averaging [11] and

translation estimation from pairwise epipolar geometry -

followed by triangulation and global BA.

A key component in both paradigms is BA, a nonlin-

ear optimization that jointly refines camera poses and 3D

points to minimize reprojection error. It is widely consid-

ered the core of any SfM pipeline. Among existing sys-

tems, COLMAP [21] remains the gold standard for tradi-

tional SfM, known for its robustness, accuracy, and ease of

use.

2.2. Modern SfM Variants

Traditional SfM pipelines are heavily handcrafted and rely

on many small subproblems, each of which can introduce

errors that propagate through the pipeline. Recent efforts

have sought to partially or fully replace components of the

traditional pipeline using modern deep learning techniques.

For example, SuperPoint [4] or DeDoDe [6] learn to detect

and describe keypoints using neural networks. SuperGlue

[20] employs a graph neural network to match keypoints

between two images. Furthermore, detector-free match-

ing avoids sparse keypoints by leveraging self- and cross-

attention mechanisms [24]. Recent state-of-the-art methods

like PixSfM [16] use feature-metric keypoint adjustment

and feature-metric BA. Detector-Free SfM [13] proposes to

first build a coarse model using detector-free matches and

then to refine the map and poses with keypoint matches.

Other works aim to fully replace the SfM pipeline with neu-

ral counterparts or alternative formulations. VGGSfM [29]

builds a fully differentiable SfM pipeline that is trained end-

to-end. FlowMap [23] and ACE0 [1] train self-supervised

depth and scene coordinate regressors as part of the recon-

struction process.

While these approaches try to replace traditional com-

ponents with learned counterparts, we instead focus on ex-

tending the traditional pipeline with additional constraints

from learned priors.

2.3. 3D Reconstruction Priors

Wang et al. [30] recently introduced DUSt3R, a 3D founda-

tion model trained on a large-scale dataset to regress pair-

wise pointmaps in a common coordinate system. It es-

timates camera poses through a global optimization tech-



Figure 2. Method Overview. Starting with an unordered collection of images, we perform image matching to extract 2D keypoint

constraints. Additionally, we extract 3D pointmaps from a reconstruction prior. We then perform incremental reconstruction, incorporating

the 3D pointmaps as additional constraints into the global optimization. The final reconstruction includes both the scene structure and the

camera parameters.

nique merging the pairwise pointmaps. The follow-up

work, MASt3R [14], adapts the representation to regress

pixel-wise feature vectors used for image matching on top.

MASt3R-SfM [5] introduced an efficient way to leverage

the output of DUSt3R and MASt3R to construct an end-to-

end SfM pipeline. A common bottleneck is that these meth-

ods only work on pairs of input. Consequently, researchers

have adapted the architecture to handle multiple images,

all expressed in a common coordinate system [2, 26, 28].

Among them, VGGT [28] also adds additional regression

heads for extrinsic and intrinsic parameters, depth maps,

and 3D point tracks. These priors have been adapted, for

example, to SLAM [18], Gaussian Splatting [7, 25] or dy-

namic scenes [10].

In contrast to these feed-forward 3D reconstruction sys-

tems, which reconstruct camera poses via optimization in

3D or directly regress them, our work explores how such

3D pointmaps can integrate into traditional SfM pipelines.

3. Preliminaries

Structure from Motion (SfM) aims to jointly estimate

camera parameters (motion) and the 3D structure of a scene

given a set of input images. Formally, given N RGB im-

ages denoted as I = {Ii}
N
i=1

, SfM recovers sparse scene

structure X = {xk}
M
k=1

representing M 3D points xk ∈
R

3, and a set of camera parameters H = {(Ki, Ti)}
N
i=1

.

Here, Ki ∈ R
3×3 is the intrinsic calibration matrix, and

Ti ∈ R
3×4 encodes the extrinsic rotation and translation. A

3D point xk is projected onto the i-th image plane using a

camera projection function π, yielding 2D pixel coordinates

pi,k = π(Ki, Ti, xk) ∈ R
2.

Bundle Adjustment (BA) is a global optimization tech-

nique used to refine camera parameters and 3D structure by

minimizing the reprojection error. Given 2D keypoint loca-

tions yi,k ∈ R
2 obtained from image feature matching, BA

minimizes the following energy function:

EBA =

N∑

i=1

M∑

k=1

∥yi,k − π(Ki, Ti, xk)∥
2

To mitigate the effect of outliers, robust loss functions such

as the Cauchy loss, defined as f(x) = log(1 + x), are com-

monly applied to the residuals.

DUSt3R is a learned 3D reconstruction prior that takes

an image pair (Ii, Ij) and produces dense, pixel-aligned

pointmaps X ∈ R
W×H×3 along with associated confidence

maps C ∈ R
W×H×1 in a common coordinate system. We

define X
i,j as the 3D pointmaps from image Ii represented

in the camera coordinate system of Ij .

4. Method

We propose a novel Point-to-Point (P2P) energy term in-

corporating 3D reconstruction priors from learned models

such as DUSt3R into global optimization. We start by ex-

tracting pointmaps at keypoint locations determined from

pairwise image matches. During reconstruction, within the

global optimization step, we first align these pointmaps to

the estimated scene structure and subsequently minimize a

3D Point-to-Point error alongside BA.

4.1. Pointmap Extraction

We start by matching images, resulting in Mi,j correspond-

ing keypoint location pairs {(yi,k, yj,k)}
Mi,j

k=1
for images Ii

and Ij , which are subsequently geometrically verified. We

define the set of verified image pairs as E = {(i, j) | 1 ≤
i < j ≤ N}.

Next, we forward Ii and Ij through our 3D reconstruc-

tion prior to obtain pointmaps Xi,j and X
j,j . For clarity, we



Figure 3. Visualization of our pointmap alignment process. Starting with an image collection, we match images to extract pairwise keypoint

constraints. We pass all pairwise images through our 3D reconstruction prior to extract pointmaps. Using the provided keypoint matches

(green), we extract the corresponding pointmap matches (orange). Next, we estimate a rigid alignment from the pointmap matches to their

corresponding scene structure (purple). This serves as initialization to our global optimization. Note: Gray points are for visualization

purposes only and are not used in the global optimization.

introduce the notation X
i,e := X

i,j and X
j,e := X

j,j for a

given e = (i, j) ∈ E , indicating that both pointmaps reside

in the same coordinate system.

From these pointmaps, we sample the 3D locations at

the matched pixel coordinates: x
i,e
k = X

i,e(yi,k) and

x
j,e
k = X

j,e(yj,k), alongside their associated confidence

scores c
i,e
k = C

i,e(yi,k) and c
j,e
k = C

j,e(yj,k).
Thus, for each geometrically verified pair e, we obtain a

set of correspondences

{(yi,k, yj,k, x
i,e
k , x

j,e
k , c

i,e
k , c

j,e
k )}Me

k=1

which constrain the scene structure. We then proceed with

the classical SfM pipeline by initialization, image registra-

tion, triangulation, and further refinement.

4.2. Pointmap Alignment

Assume a partial reconstruction with scene structure X .

Every point xk ∈ X can be observed in at least 2 input

frames with corresponding keypoint locations, pointmaps

and confidence maps have associated pointmap values x
i,e
k

and x
j,e
k from the keypoint matches extracted above. Since

pointmaps and scene structure live in different coordinate

systems, we estimate a rigid transformation as follows:

T ∗
e , s

∗
e = argmin

Te,se

Me∑

k=1

∑

l∈{i,j}

∥xk − seTe(x
l,e
k )∥2

where T is parameterized by a rotation matrix and transla-

tion vector and Me the numbers of scene points visible in

both Ii and Ij . We solve the rigid alignment via Procrustes

analysis [22] using RANSAC [8], as both xk and x
i,j
k can

contain outliers. We repeat this process for every image pair

observing at least 3 similar scene points yielding a set of all

rigid transformations T = {(Te, se) | e ∈ E}.

4.3. Point-to-Point Energy

We now minimize the distance between the scene points and

pairwise point maps. While we can align the scene struc-

ture to the pointmaps, directly optimizing the 3D constraints

would lead to a trivial solution. We, therefore, minimize

with respect to the rigid transformations Te, se of the pair-

wise pointmaps to the scene structure, which we estimated

in the last step. We define the Point-to-Point energy term

across all image pairs E as:

EP2P =
∑

e∈E

∑

l∈{i,j}

Me∑

k=1

∥xk − seTe(x
l,e
k )∥2

where we optimize for scene structure xk and pairwise rigid

transformation parameters Te. The scale se is held fixed to

avoid degenerate solutions such as global shrinkage or col-

lapse of the reconstruction. We apply this energy term only

to inliers as estimated by the RANSAC alignment. Further-

more, we add the confidence maps c
i,e
k to weight residuals

based on the pointmap confidence values.



Figure 4. Visualization of our global optimization process.

Left: Point-to-Point optimization, aligning scene structure X to

pointmaps X. T represents a rigid transformation applied to pair-

wise pointmaps. Right: Classical reprojection error, minimizing

the distance in 2D screen space to the keypoint location.

4.4. Joint Energy Minimization

The Point-to-Point energy complements the standard repro-

jection loss in BA and provides additional geometric con-

straints derived from learned 3D reconstruction prior. We

visualize the energies in Figure 4. Our final global opti-

mization energy function then combines both terms to min-

imize

X ∗,H∗ = argmin
X ,H,T

(EBA + βEP2P )

Note that T serves only as an auxiliary optimization to en-

sure proper alignment of the pointmaps to constrain the

scene structure accurately and will be thrown away after ev-

ery global optimization in the incremental reconstruction.

4.5. Implementation Details

We implement a traditional incremental SfM pipeline

around our above-mentioned method. We fix the gauge

freedom by initializing the first camera with zero transla-

tion and identity rotation. Image registration is done us-

ing Perspective-n-Point [9] with RANSAC [8]. We per-

form multi-view triangulation using direct linear transfor-

mation [12]. We use a RANSAC inlier threshold of 0.1

for the pointmap alignment. To refine the structure and

motion, we apply global optimization where we minimize

EBA + βEP2P . We set β = 0.01 for our joint energy af-

ter rescaling the 3D error to align with the pixel error (i.e.

scale the residuals to pixel distance). We perform global

optimization with gradient descent and line search. After

triangulation and global optimization, we filter scene struc-

ture based on triangulation angle and reprojection error. We

remove scene points from the current visibility if they fail

thresholds, but retriangulate them once additional images

are registered. We use the intrinsics provided in our dataset

and keep them fixed. We iterate until all images have been

registered or no further images can be registered. Most of

the code is written in PyTorch, and we occasionally use

OpenCV.

5. Experiments

5.1. Experimental Setup

Baselines. Our baseline is the incremental pipeline de-

scribed before, which we evaluate without incorporating the

proposed Point-to-Point energy. We tune its hyperparam-

eters - including all outlier filtering heuristics - and keep

them fixed when introducing Point-to-Point energy, to en-

sure a fair and controlled comparison. Unless stated other-

wise, we use MASt3R [14,15] with fast reciprocal matching

for image matching and DUSt3R [30] with a DPT head and

an input resolution of 512×336 for the 3D reconstruction

prior. We limit pairwise matches to 256 to improve effi-

ciency, with minimal performance loss. We benchmark our

approach against modern 3D methods, including DUSt3R

with their global optimization (DUSt3R+GO) in 3D [30],

VGGT [28] - which directly regresses camera poses - and

MASt3R-SfM [5].

Metrics. We evaluate reconstruction quality using three

metrics. Following [5], we use: (1) Average Translation Er-

ror (ATE) — the mean Euclidean distance between ground-

truth and estimated camera positions, computed after pro-

crustes alignment [22] on normalized coordinates; and (2)

Registration Rate — the percentage of successfully regis-

tered cameras. In addition, following [28], we report (3)

AUC@30, which combines relative rotation accuracy and

relative translation accuracy across image pairs at varying

thresholds (up to 30 degrees).

Data. Our evaluation is based on ScanNet++ [31], a widely

used dataset of indoor scenes. While ground-truth camera

poses are not provided, we rely on COLMAP [21] for pose

estimation, which is considered highly reliable when sup-

plied with dense, overlapping image sequences. We sample

scenes from the recent ScanNet++ v2 release, which none of

the methods were trained on, though DUSt3R and MASt3R

were trained on earlier ScanNet++ versions and VGGT on

ScanNet [3]. For each scene, frames are randomly selected

for evaluation.

5.2. Experimental Results

We evaluate overall reconstruction quality for frame counts

of 15, 20, and 25 on 30 randomly sampled scenes (Ta-

ble 1). Our proposed Point-to-Point energy formulation

matches the Baseline at 15 images and shows improved per-

formance at 20 and 25 images, highlighting its effective-

ness as a complementary optimization strategy. We also ob-

serve that our Baseline achieves strong results compared to

prior approaches, including MASt3R-SfM [5] and VGGT

[28], which we attribute to the use of exhaustive pairwise

feature matching. In contrast, MASt3R-SfM omits ex-

haustive matching to maintain scalability, VGGT regresses

poses without post-optimization, and DUSt3R+GO only

optimizes in 3D space, limiting its accuracy.



Method 15 Images 20 Images 25 Images

ATE ↓ AUC@30 ↑ Reg. ↑ ATE ↓ AUC@30 ↑ Reg. ↑ ATE ↓ AUC@30 ↑ Reg. ↑

Baseline 0.0181 82.4 97.1 0.0117 86.6 98.0 0.0107 86.7 99.3

Baseline+Ours 0.0190 83.5 96.9 0.0090 88.3 98.7 0.0074 90.8 98.6

DUSt3R+GO 0.0234 80.8 100 0.0147 84.7 100 0.0134 85.2 100

VGGT* 0.0240 69.9 100 0.0192 71.4 100 0.0179 71.5 100

MASt3R-SfM 0.0211 76.3 100 0.0133 78.8 100 0.0118 78.8 100

Table 1. Camera pose estimation on ScanNet++ [31] with varying view counts (15, 20, 25). ATE (↓), AUC@30 (↑), and registration rate

(↑). Metrics averaged over 30 scenes. *Feed-forward pose regression without further optimization.

5.3. Ablations

We perform ablation studies on the design choices of the

Point-to-Point energy, on the 2D keypoint constraints, and

on the 3D reconstruction priors underlying our method. All

ablations are performed on 10 scenes with 15 randomly

sampled frames.

Point-to-Point Energy (Table 2). We observe that naively

incorporating the pointmaps as constraints in the energy

formulation (+P2P) leads to significant instability due to

the presence of outliers. This is reflected in the strong

degradation across all reported metrics when applying the

Point-to-Point energy directly. Particularly telling is the

drop in the number of scene points (#Pts), reported as

an additional metric. It suggests that the energy function

moves scene points too far from their corresponding

keypoint observations, leading to them being filtered after

optimization. We discuss this further in the limitations

section 5.4. To mitigate the effect of outliers, we propose

selectively applying the energy only to inlier correspon-

dences via RANSAC alignment (+Inliers only). This

significantly improves performance and even surpasses

the baseline. Furthermore, incorporating confidence maps

estimates from the 3D reconstruction prior (+Conf. Weight)

boosts performance. Accounting for this uncertainty allows

the optimization to focus on more reliable correspondences,

leading to improved reconstruction results.

Image Matching (Table 3). Even if the 3D reconstruction

prior is perfect, we still need good triangulated image

matches to effectively align and constrain the scene

structure. We therefore evaluate our method with different

image matching methods, both traditional and neural,

using SIFT [17] and MASt3R [14]. Matches for SIFT

are selected using nearest neighbor with Lowe ratio [17].

MASt3R matches are computed using fast reciprocal

matching [14]. We find that MASt3R matches perform

better than SIFT, which is to be expected, as they are more

reliable and dense. Furthermore, adding our Point-to-Point

Method ATE ↓ AUC@30 ↑ Reg. ↑ #Pts ↑

Baseline 0.0159 80.6 95.3 1204

+P2P 0.0736 54.0 74.0 795

+Inliers only 0.0166 82.6 94.0 1224

+Conf. Weight 0.0138 84.9 98.0 1260

Table 2. Ablation study on design choices for our energy formula-

tion. Metrics are averaged over 15 images from 10 different scenes

in ScanNet++ [31].

Matches Method ATE ↓ AUC@30 ↑ Reg. ↑

SIFT+NN Baseline 0.0243 73.3 64.0

+Ours 0.0228 73.8 64.0

MASt3R Baseline 0.0159 80.6 95.3

+Ours 0.0138 84.9 98.0

Table 3. Ablation study on different image matching methods (2D

constraints). NN stands for nearest neighbor, MASt3R matches

are computed using fast reciprocal matching [14]. Metrics are av-

eraged over 10 ScanNet++ [31] scenes, each with 15 images.

energy consistently outperforms upon BA Baseline in both

scenarios. However, the relative improvement for SIFT

is smaller. This can be attributed to SIFT matches being

computed at a higher resolution (1752×1168), whereas

the pointmaps are limited to 512×336, making them less

accurate.

Pointmaps (Table 4). Lastly, we ablate the different 3D

reconstruction priors. Here, we compare the seminal work

DUSt3R [30] with the current state-of-the-art VGGT [28].

VGGT can work with two or more images in the same co-

ordinate system. We experiment with both extremes - pair-

wise extraction and full multi-view pointmaps. We find that

all methods can outperform the BA baseline. It is however



3D Reconstruction Prior ATE ↓ AUC@30 ↑ Reg. ↑

Baseline (No Prior) 0.0159 80.6 95.3

DUSt3R 0.0138 84.9 98.0

VGGT 0.0137 82.61 96.7

VGGT-MV 0.0110 84.06 97.3

Table 4. Ablation study on different 3D reconstruction priors.

VGGT-MV extracts multi-view pointmaps instead of pairwise

ones. Metrics are averaged over 10 ScanNet++ [31] scenes, each

with 15 images.

Figure 5. Visualization of the mean reprojection error and its

standard deviation (std) for both the scene structure (Point) and

the corresponding 3D pointmaps throughout the optimization pro-

cess. Jumps indicate the addition of a new camera. Pointmaps are

above the outlier threshold, so the energy terms must be properly

weighted to avoid filtering out too much scene structure and desta-

bilizing the reconstruction.

unclear which 3D reconstruction prior works best, and fur-

ther investigation is necessary to determine the effect of dif-

ferent priors.

5.4. Limitations & Future Work

While adding 3D constraints in the global optimization can

lead to better results, there is still some fundamental prob-

lem in the formulation of our energy. Since the rest of the

pipeline - i.e., image registration, triangulation, and outlier

filtering - solely relies on 2D keypoints, we cannot harness

the full power of the 3D constraints. Assume perfect 3D

constraints, i.e. all scene points should be where the 3D

pointmaps are and we fully optimize for that. This would

heavily destabilize the pipeline, as these points don’t agree

with our 2D constraints. We visualize this hypothetical sce-

nario and the resulting reprojection error in Figure 5. Mov-

ing the scene structure to the pointmaps would cause most

points to be identified as outliers and filtered from the re-

construction based on the reprojection error. Therefore, we

hope to incorporate these 3D constraints into other parts of

the pipeline to relax strict outlier filtering or to allow refine-

ment of 2D keypoint locations by leveraging the 3D con-

straints (as e.g. in PixSfM [16], where they refine the 2D

keypoint locations using feature-metric optimization).

Furthermore, the current pipeline is very expensive, per-

forming matching and extracting pointmaps for all pairs of

images, which limits scalability. Approaches like MASt3R-

SfM [5] form a sparse scene graph to perform pairwise

matching on, which greatly improves scalability. Fur-

thermore, instead of computing pairwise pointmaps, we

can compute for all connected components in the sparse

scene graph using a multi-view 3D reconstruction prior like

VGGT [28]. The VGGT-MV results in Table 4 indicate

promising results for this avenue of future work.

Lastly, one can improve the alignment of pointmaps to the

scene structure. Especially when moving to larger and/or

outdoor scenes with bigger foreground/background differ-

ences, current 3D reconstruction priors seem to struggle and

are often only coherent within a semantic group, but not be-

tween them [25]. Therefore, exploring semantic alignment

or non-rigid alignment techniques, such as in SPARS3R

[25] appear promising.

6. Conclusion

We revisit the traditional Structure from Motion pipeline,

which relies on keypoints and reprojection error, and inte-

grate modern 3D reconstruction priors into the global opti-

mization, enabling direct optimization in 3D space. We pro-

pose a novel energy formulation that minimizes the distance

between 3D scene structure and pointmaps from our prior,

alongside the traditional reprojection error. Our approach

enhances the global optimization with 3D constraints, yield-

ing improved results for sparse-view reconstructions of in-

door scenes. However, further research is needed to im-

prove scalability for larger image collections and better in-

tegrate pointmaps into other components of the pipeline.
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ing image matching in 3d with mast3r. arXiv preprint

arXiv:2406.09756, 2024. 5

[16] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Lars-

son, and Marc Pollefeys. Pixel-perfect structure-from-

motion with featuremetric refinement. In Proceedings of

the IEEE/CVF international conference on computer vision,

pages 5987–5997, 2021. 2, 7

[17] David G Lowe. Object recognition from local scale-invariant

features. In Proceedings of the seventh IEEE international

conference on computer vision, volume 2, pages 1150–1157.

Ieee, 1999. 1, 2, 6

[18] Riku Murai, Eric Dexheimer, and Andrew J. Davison.

MASt3R-SLAM: Real-time dense SLAM with 3D recon-

struction priors. arXiv preprint, 2024. 3

[19] Linfei Pan, Daniel Barath, Marc Pollefeys, and Jo-

hannes Lutz Schönberger. Global Structure-from-Motion

Revisited. In European Conference on Computer Vision

(ECCV), 2024. 2

[20] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. SuperGlue: Learning feature

matching with graph neural networks. In CVPR, 2020. 1,

2

[21] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 2, 5

[22] Peter H. Schönemann. A generalized solution of the orthog-

onal procrustes problem. Psychometrika, 31(1):1–10, 1966.

4, 5

[23] Cameron Smith, David Charatan, Ayush Tewari, and Vincent

Sitzmann. Flowmap: High-quality camera poses, intrinsics,

and depth via gradient descent. In 3DV, 2025. 1, 2

[24] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and

Xiaowei Zhou. LoFTR: Detector-free local feature matching

with transformers. CVPR, 2021. 1, 2

[25] Yutao Tang, Yuxiang Guo, Deming Li, and Cheng Peng.

Spars3r: Semantic prior alignment and regularization for

sparse 3d reconstruction. arXiv preprint arXiv:2411.12592,

2024. 3, 7

[26] Zhenggang Tang, Yuchen Fan, Dilin Wang, Hongyu Xu,

Rakesh Ranjan, Alexander Schwing, and Zhicheng Yan.

Mv-dust3r+: Single-stage scene reconstruction from sparse

views in 2 seconds. arXiv preprint arXiv:2412.06974, 2024.

3

[27] Bill Triggs, Philip F McLauchlan, Richard I Hartley,

and Andrew W Fitzgibbon. Bundle adjustment—a mod-

ern synthesis. In Vision Algorithms: Theory and Prac-

tice: International Workshop on Vision Algorithms Corfu,

Greece, September 21–22, 1999 Proceedings, pages 298–

372. Springer, 2000. 1, 2

[28] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea

Vedaldi, Christian Rupprecht, and David Novotny. Vggt:

Visual geometry grounded transformer. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2025. 1, 3, 5, 6, 7

[29] Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and

David Novotny. Vggsfm: Visual geometry grounded deep

structure from motion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 21686–21697, 2024. 1, 2

[30] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris

Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vi-

sion made easy. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages

20697–20709, June 2024. 1, 2, 5, 6

[31] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,

and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-

door scenes. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 12–22, 2023. 5, 6, 7


	. Introduction
	. Related Work
	. Traditional SfM
	. Modern SfM Variants
	. 3D Reconstruction Priors

	. Preliminaries
	. Method
	. Pointmap Extraction
	. Pointmap Alignment
	. Point-to-Point Energy
	. Joint Energy Minimization
	. Implementation Details

	. Experiments
	. Experimental Setup
	. Experimental Results
	. Ablations
	. Limitations & Future Work

	. Conclusion

