

Revisiting Structure from Motion with 3D Reconstruction Priors

Guided Research WS24/25

Daniel Korth
Advisor: Prof. Matthias Nießner

30.05.2025

Introduction

Structure from Motion

2D Image Collection

3D Reconstruction

Camera Position + 3D Points

Detection + Description

Descriptor Matching

Geometric Verification

3D Reconstruction Networks

SfM Optimization

Global Optimization

SfM Optimization

Global Optimization

SfM Optimization

Global Optimization

Goal

Add 3D Constraints to SfM Pipeline

Related Work

Incremental SfM Pipeline

Modern SfM

Detection / Description

SuperPoint [1], DeDoDe [2], ...

[1] DeTone et al., "SuperPoint: Self-supervised interest point detection and description", CVPRW 2018
[2] Edstedt et al., "DeDoDe: Detect, Don't Describe - Describe, Don't Detect for Local Feature Matching", 3DV 2024c

Descriptor Matching

SuperGlue [3], LightGlue [4], ...

Dense Matching

LoFTR [5], RoMA [6], ...

[3] Sarlin et al., "SuperGlue: Learning feature matching with graph neural networks", CVPR 2020
 [4] Lindenberger et al., "LightGlue: Local Feature Matching at Light Speed", ICCV 2023

[5] Sun et al., "LoFTR: Detector-free local feature matching with transformers", CVPR 2021 [6] Edstedt et al., "RoMA: Robust Dense Feature Matching", CVPR 2024

End-to-End differentiable SfM

VGGSfM [1]

FlowMap [2]

- [1] Wang et al., "VGGSfM: Visual geometry grounded deep structure from motion", CVPR 2024
- [2] Smith & Charatan et al., "Flowmap: High-quality camera poses, intrinsics, and depth via gradient descent", 3DV 2025
- [3] Brachmann et al., "Scene Coordinate Reconstruction: Posing of image collections via incremental learning of a relocalizer", ECCV 2024

ACE0 [3]

[1] Wang et al., "Dust3r: Geometric 3d vision made easy", CVPR 2024

[1] Wang et al., "Dust3r: Geometric 3d vision made easy", CVPR 2024

Follow-up: MASt3R [2], MASt3R-SfM [3]

[2] Leroy et al., "Grounding image matching in 3d with mast3r", arXiv 2024
[3] Duisterhof et al., "MASt3R-SfM: a fully-integrated solution for unconstrained structure-from-motion". 3DV 2025

[1] Wang et al., "Dust3r: Geometric 3d vision made easy", CVPR 2024

Follow-up: MASt3R [2], MASt3R-SfM [3]

[2] Leroy et al., "Grounding image matching in 3d with mast3r", arXiv 2024

[3] Duisterhof et al., "MASt3R-SfM: a fully-integrated solution for unconstrained structure-from-motion". 3DV 2025

Multiple Views:

MV-DUSt3R+ [4], VGGT [5]

[4] Tang et al., "MV-DUSt3R+: Single-stage scene reconstruction from sparse views in 2 seconds", CVPR 2025 [5] Wang et al., "VGGT: Visual geometry grounded transformer". CVPR 2025

[1] Wang et al., "Dust3r: Geometric 3d vision made easy", CVPR 2024

Follow-up: MASt3R [2], MASt3R-SfM [3]

[2] Leroy et al., "Grounding image matching in 3d with mast3r", arXiv 2024

[3] Duisterhof et al., "MASt3R-SfM: a fully-integrated solution for unconstrained structure-from-motion", 3DV 2025

Multiple Views:

MV-DUSt3R+ [4], VGGT [5]

[4] Tang et al., "MV-DUSt3R+: Single-stage scene reconstruction from sparse views in 2 seconds", CVPR 2025 [5] Wang et al., "VGGT: Visual geometry grounded transformer", CVPR 2025

Adapt to downstream:

MASt3R-SLAM [6], InstantSplat [7],

[6] Murai et al., "MASt3R-SLAM: Real-time dense SLAM with 3D reconstruction priors", CVPR 2025
[7] Fan et al., "InstantSplat: Sparse-View Gaussian Splatting in Seconds", arXiv 2024

Incremental SfM

Incremental SfM

Image Matching

Incremental SfM

End-to-End SfM

Image Matching

Incremental SfM

End-to-End SfM

Image Matching

3D Reconstruction Networks

Reconstruction Evolution End-to-End SfM Incremental SfM Downstream Task: Gaussian Splatting Correspondence Search Incremental Reconstruction Reconstruction Poses, Intrinsics Depth CNN and Geometry Intrinsics Solver Outlier Filtering Pose Solver Corresp. Loss

Image Matching

3D Reconstruction Networks

Preliminaries

Bundle Adjustment

$$E_{\text{BA}} = \sum_{i=1}^{N} \sum_{k=1}^{M} \|y_{i,k} - \pi(K_i, T_i, x_k)\|^2$$

Method

Pipeline

Method Overview

Method Overview

2D-3D Matches

2D-3D Matches

Method Overview

Method Overview

Global Optimization

Intuitively: Make Scene Structure "agree" with 3D Reconstruction Networks

More Formally

$$E_{\text{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i,j\}} \sum_{k=1}^{M_e} ||x_k - s_e T_e(x_k^{l,e})||^2$$

scene point

pointmap point

$$E_{\text{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i, j\}} \sum_{k=1}^{M_e} \| x_k - s_e T_e(x_k^{l, e}) \|^2$$

scene point

pointmap point

$$E_{ ext{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i,j\}} \sum_{k=1}^{M_e} \|x_k - s_e T_e(x_k^{l,e})\|^2$$
 rigid transformation (+ scale)

scene point

pointmap point

$$E_{ ext{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i,j\}} \sum_{k=1}^{M_e} \| x_k - s_e T_e(x_k^{l,e}) \|^2$$
 rigid transformation (+ scale)

for all pairwise pointmaps

scene point

pointmap point

$$E_{\text{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i,j\}} \sum_{k=1}^{M_e} \|x_k - s_e T_e(x_k^{l,e})\|^2$$
 rigid transformation (+ scale)

for all pairwise pointmaps

for all matches

$$E_{
m P2P}=$$

$$E_{\text{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i,j\}} \sum_{k=1}^{M_e} \|x_k - s_e T_e(x_k^{l,e})\|^2$$

-> Rigid Alignment (RANSAC) + only minimize for inliers

$$E_{\text{P2P}} = \sum_{e \in \mathcal{E}} \sum_{l \in \{i, j\}} \sum_{k=1}^{M_e} c_k^{l, e} ||x_k - s_e T_e(x_k^{l, e})||^2$$

pointmap confidence -> downweight impact of inaccurate pointmaps

Global Optimization

Implementation Details

- implemented with opency & torch

Implementation Details - Image Matching

- Feature Extraction + Matching: MASt3R (limit to 256 matches)
- Geometric Verification: Essential Matrix + RANSAC

Implementation Details - 3D Reconstruction Prior

DUSt3R 512x512 input res + DPT [1]

Implementation Details - Initialization

- Select initial pair based on #Matches and median triangulation angle

Implementation Details - Image Registration

- Next Best View: #Visible Points
- Registration: PnP + RANSAC

Implementation Details - Triangulation

- Multi-View Triangulation (using DLT Method)
- Reject points with high reprojection error or low triangulation angle

Implementation Details - Global Optimization

- 1. Pairwise RANSAC Alignment to Global Scene (use as initial parameters)
- Remove outliers from energy
- 3. Minimize (GD + Linesearch)

$$\mathcal{X}^*, \mathcal{H}^* = \underset{\mathcal{X}, \mathcal{H}, \mathcal{T}}{\operatorname{arg\,min}} (E_{BA} + \beta E_{P2P})$$

Implementation Details - Outlier Filtering

- High Reprojection Error
- Low Triangulation Angle

Implementation Details

Implementation Details - TEMPLATE SLIDE

- TEMPLATE SLIDE

Experiments

Experimental Setup - Metrics

Methods:

- Baseline
- Baseline+Ours

- DUSt3R + GO [1]
- VGGT [2]
- MASt3R-SfM [3]

[1] Wang et al., "Dust3r: Geometric 3d vision made easy", CVPR 2024 [2] Wang et al., "VGGT: Visual geometry grounded transformer", CVPR 2025 [3] Duisterhof et al., "MASt3R-SfM: a fully-integrated solution for unconstrained structure-from-motion", 3DV 2025

Metrics:

- Average Translation Error (ATE)
- AUC@30
- Registration Rate

Data:

- ScanNet++ [4] v2 scenes
- pseudo-GT through COLMAP

iPhone RGB-D
[4] Yeshwanth & Liu et al., ScanNet++: A high-fidelity dataset of 3d indoor scenes, ICCV 2023

55

Visualization of Reconstruction Process

Visual Comparison

Baseline

Ours

Method 15 Images		20 Images			25 Images				
	$ATE \downarrow$	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑
Baseline	0.0181	82.4	97.1	0.0117	86.6	98.0	0.0107	86.7	99.3
Baseline+Ours	0.0190	83.5	96.9	0.0090	88.3	98.7	0.0074	90.8	98.6

Method 15 Images		20 Images			25 Images				
	$ATE \downarrow$	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑
Baseline	0.0181	82.4	97.1	0.0117	86.6	98.0	0.0107	86.7	99.3
Baseline+Ours	0.0190	83.5	96.9	0.0090	88.3	98.7	0.0074	90.8	98.6

Method 15 Images		20 Images			25 Images				
	$ATE \downarrow$	AUC@30 ↑	Reg. ↑	ATE↓	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑
Baseline	0.0181	82.4	97.1	0.0117	86.6	98.0	0.0107	86.7	99.3
Baseline+Ours	0.0190	83.5	96.9	0.0090	88.3	98.7	0.0074	90.8	98.6

Method 15 Images		20 Images			25 Images				
	$ATE \downarrow$	AUC@30↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑
Baseline	0.0181	82.4	97.1	0.0117	86.6	98.0	0.0107	86.7	99.3
Baseline+Ours	0.0190	83.5	96.9	0.0090	88.3	98.7	0.0074	90.8	98.6

Method	15 Images		20 Images			25 Images			
	$ATE \downarrow$	AUC@30↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑	ATE ↓	AUC@30 ↑	Reg. ↑
Baseline	0.0181	82.4	97.1	0.0117	86.6	98.0	0.0107	86.7	99.3
Baseline+Ours	0.0190	83.5	96.9	0.0090	88.3	98.7	0.0074	90.8	98.6
DUSt3R+GO	0.0234	80.8	100	0.0147	84.7	100	0.0134	85.2	100
VGGT*	0.0240	69.9	100	0.0192	71.4	100	0.0179	71.5	100
MASt3R-SfM	0.0211	76.3	100	0.0133	78.8	100	0.0118	78.8	100

Table 1. Camera pose estimation on ScanNet++ [31] with varying view counts (15, 20, 25). ATE (\downarrow), AUC@30 (\uparrow), and registration rate (\uparrow). Metrics averaged over 30 scenes. *Feed-forward pose regression without further optimization.

Ablations

Energy Design Choices

Method	ATE ↓	AUC@30 ↑	Reg. ↑	#Pts↑
Baseline	0.0159	80.6	95.3	1204
+P2P	0.0736	54.0	74.0	795

Table 2. Ablation study on design choices for our energy formulation. Metrics are averaged over 15 images from 10 different scenes in ScanNet++ [31].

Energy Design Choices

Method	ATE ↓	AUC@30 ↑	Reg. ↑	#Pts↑
Baseline	0.0159	80.6	95.3	1204
+P2P	0.0736	54.0	74.0	795
+Inliers only	0.0166	82.6	94.0	1224

Table 2. Ablation study on design choices for our energy formulation. Metrics are averaged over 15 images from 10 different scenes in ScanNet++ [31].

Energy Design Choices

Method	ATE↓	AUC@30 ↑	Reg. ↑	#Pts↑
Baseline	0.0159	80.6	95.3	1204
+P2P	0.0736	54.0	74.0	795
+Inliers only	0.0166	82.6	94.0	1224
+Conf. Weight	0.0138	84.9	98.0	1260

Table 2. Ablation study on design choices for our energy formulation. Metrics are averaged over 15 images from 10 different scenes in ScanNet++ [31].

Image Matching (2D Constraints)

Matches	Method	ATE ↓	AUC@30 ↑	Reg. ↑
SIFT+NN	Baseline	0.0243	73.3	64.0
	+Ours	0.0228	73.8	64.0
MASt3R	Baseline	0.0159	80.6	95.3
	+Ours	0.0138	84.9	98.0

Table 3. Ablation study on different image matching methods (2D constraints). NN stands for nearest neighbor, MASt3R matches are computed using fast reciprocal matching [14]. Metrics are averaged over 10 ScanNet++ [31] scenes, each with 15 images.

SIFT matches

MASt3R matches

3D Reconstruction Prior (3D Constraints)

3D Reconstruction Prior	ATE↓	AUC@30 ↑	Reg. ↑
Baseline (No Prior)	0.0159	80.6	95.3
DUSt3R	0.0138	84.9	98.0
VGGT	0.0137	82.61	96.7
VGGT-MV	0.0110	84.06	97.3

Table 4. Ablation study on different 3D reconstruction priors. VGGT-MV extracts multi-view pointmaps instead of pairwise ones. Metrics are averaged over 10 ScanNet++ [31] scenes, each with 15 images.

3D Reconstruction Prior (3D Constraints)

3D Reconstruction Prior	ATE↓	AUC@30 ↑	Reg. ↑
Baseline (No Prior)	0.0159	80.6	95.3
DUSt3R	0.0138	84.9	98.0
VGGT	0.0137	82.61	96.7
VGGT-MV	0.0110	84.06	97.3

Table 4. Ablation study on different 3D reconstruction priors. VGGT-MV extracts multi-view pointmaps instead of pairwise ones. Metrics are averaged over 10 ScanNet++ [31] scenes, each with 15 images.

Limitations & Future Work

Scalability

N Images -> up to [N choose 2] $\binom{N}{2}$ pairwise pointmaps

- -> Multi-View Methods
- -> Merging pairwise pointmaps during scene alignment

Integrate into other parts of the pipeline

3D constraints **only** valid in Global Optimization, rest of pipeline relies **solely** on 2D keypoint matches

[1] Schönberger and Frahm, "Structure-from-motion revisited", CVPR 2016

Conclusion

Revisiting Structure from Motion with 3D Reconstruction Priors

Guided Research WS24/25
Daniel Korth
Advisor: Prof. Matthias Nießner

30.05.2025